
3 Musketeers - Battlecode 2021 Post Mortem

Winston Cheung, Maxwell Jones, David Lyons, Bharath Sreenivas

January 2021

1 Introduction

1.1 Battlecode Introduction

Battlecode is an MIT AI competition run every year throughout the month of January. At
the beginning of the month, they release a new 2 player game, at which point teams have to
code up a bot that plays said game. There are multiple tournaments throughout the month,
ending in a tournament for the top 16 teams out of the hundreds that submit code for cash
prizes.

1.2 Team Introduction

We’re four computer science students in our Sophomore year at Carnegie Mellon University.
We origionally chose the name 3 Musketeers because there was only 3 of us, but some time
during the first week we added another member, so we ended up with 4 people for most of
the tournament. It was our first time doing Battlecode, and because of that we didn’t really
know what we were doing for a large part of the process.

As the month progressed and we adapted to the changing meta, we ended up qualifying
for the final tournament and placed 9th out of the 16 teams. Given our inexperience, we
were pretty happy with that result, and are hoping to do even better in the coming years.
This is a newbie perspective on making a deep run in the tournament, with highlights of our

1



3 Musketeers - Battlecode 2021 Post Mortem

strategy and what we learned as the month progressed. If you want to take a look at our
code, it is linked here, and our final player is under src/musketeerplayerfinal.

2 Game Overview

There were two methods to win a game in Battlecode 2021:

• completely destroy your opponent by capturing or destroying all of their units

• survive until the end of the game (some set number of rounds) and have more votes
than your opponent at the end1

Games are played on a 2D rectangluar maps with widths and heights between 32 and 64
tiles each. Each tile has a certain passability from .1 to 1, which indicates how fast robots
can move on these tiles. Lower passability means that robots will take longer to move. For
instance, it would take a robot 10 turns to move through a tile with .1 passability2.

There were a total of 4 different types of units that each team could control, each with
its own specific function.

• Enlightenment Centers (ECs): ECs are the most important unit of the game with
each team starting out with a set amount of ECs on the map. Each EC has some
amount of influence (read: money) that it can use to produce the other robot types,
with a cooldown of 1 turn between production of new units.

They gain influence passively each turn, dictated by a set function based on the round
number3. ECs have large vision, but cannot move. It is also important to note that
ECs can be converted from one team to another, or even can start out neutral, doing
nothing, until one team finds them and converts them.

• Politicians: Politicians are one of the two main attacking bots in the game. They
start with some amount of conviction and influence, with conviction basically referring
to how much powerful their attacks are. Politicians can empower within a certain
radius, and when they do this, their conviction is split equally among all surrounding
towers in that radius, whether friend or enemy, after a tax of 10 conviction. If enemy
politicians or ECs go into a negative amount of influence, they are converted to your
side. Politicians can also convert neutral ECs to your side.

• Slanderers: Slanderers are the main money makers in the game. when spawned, they
make some amount of money per turn. They keep making money for 50 turns, and are
converted into politicians with equal conviction/influence after 300 turns. Slanderers
have the smallest vision and cannot attack, meaning that it is increasingly important
to try to protect them to make your ECs as much money as possible.

1more on this later
2As it would turn out, different maps would drastically change optimal strategy for bots, and so having

a bot that was able to adapt to different maps/different positions withing maps was key to overall success
3The later the round, the more passive influence an EC gains

https://github.com/BSreenivas0713/Battlecode2021


3 Musketeers - Battlecode 2021 Post Mortem

• Muckrakers: Muckrakers are the second type of attack bot in the game. They are
slower than politicians, but with larger vision/attack range. While muckrakers cannot
empower, they are able to expose slanderers, killing them in one round regardless
of the influence of the slanderer getting killed or the muckraker doing the killing.
Exposing slanderers would yield a temporary buff to politician attacks, proportional
to the influence of the slanderer. They cannot be converted from team to team, but
instead die if they get put into negative conviction by an enemy politician.

All bots also had 24 bit flags, used to communicate with each other. ECs can see the flags
of all units regardless of distance, while non-EC units can see the flags of all ECs as well
as all flags in their sensing radius. Note that a bot needs the ID (unique to each robot) of
another bot to read its flag.

3 Bot Development and Meta

3.1 Release to Sprint 1

3.1.1 EC States

Before we could begin true development of these strategies, we wanted to nail down solid
fundamental code that we could build off of. The main structural support of our code was
our control of the specific state of our enlightenment centers. we had an enum of various
states that our ECs could potentially be in, and we switched between states whenever we
deemed necessary. In order to keep track of what triggered our entrance into a specific state,
we made use of a stack, dubbed the stateStack. One example use case was when we were
building a politician to attack an enemy base. We set up a state called saving for rush, from
which we entered a rushing state when we had enough money to build our rush politician.
We needed to store the state that we were in before saving for rush, so that after we build
our rush politician (which took higher priority than everything else), we could pop off the
state stack and resume previous duties. This was helpful for the future, so we could simply
add more states and make modifications easily.

3.1.2 Communications

Comms is a big part of the game, but with only 24 bits to store information, we had to be
clever to bit-pack our information so our units could read all the information they needed.
For example, when a unit found an enemy or neutral EC, they broadcasted the EC location
using our flag structure. In our comms class, we set up InformationCategory as an enum,
where we described what flag type was being sent so units knew how to decipher the bits.
When a unit sends a location back to its home EC, it uses the NEUTRAL EC or ENEMY EC
information category, telling its home which EC type it found. In addition, we use dx and
dy from home as a location mechanism, storing dx in 7 bits and dy in another 7 bits. We
also stored a logarithm of the ECs influence, so we knew how big our rush politician would
have to be. These values were constantly getting updated at the home EC, as more units
broadcast the location and updated influence values of enemy ECs.



3 Musketeers - Battlecode 2021 Post Mortem

We also use flags when we spawn robots, indicating the robot type that will be created.
Since we have various politician types, for example, we sometimes want to build an explorer,
and we sometimes want to build a rush politician. In this case, the EC can set a flag to tell
the RobotPlayer, which handles spawning robots, which robot type we want to create.

3.1.3 General Initial Strategy

As the game was released, we spent a long time reading the rules and asking questions in the
discord, eager to understand what competitors’ perspectives on strategies would be. The first
thing we noticed by chance was that muckrakers could box an enemy in, preventing them
from building units and gaining additional income beyond that earned passively. Moreover,
in order to make income ourselves and avoid the enemy from gaining a big buff, we wanted
to make slanderers and protect them as well. We rolled with this strategy for the beginning
of the tournament. The main aspects of this strategy involved two things: bodyguarding
our slanderers, and rushing muckrakers.

• Bodyguards: When a slanderer was spawned, we wanted to send a politician to
follow it. These politicians followed a slanderer, and when they get near a slanderer,
they do not move away from it. As a result, they can empower on enemy muckrakers
that came by to expose our slanderers. This was an interesting strategy that worked
in the beginning of the tournament.

• Muck Rush: We spawned many muckrakers with the intent of exploring the map.
Originally, we thought that a small muckraker would not be able to survive the trip
across the map and land near an enemy EC, so we spawned 50-influence muckrakers
at the start of the tournament. Eventually, we realized that increasing our number of
muckrakers spawned would allow us to overwhelm the enemy regardless of how big the
muckrakers were, so we switched to spawning small 1-influence muckrakers. When a
muckraker found an enemy EC, it simply sat there, hoping to get some neighboring
muckrakers to build a wall around the enemy EC, blocking it in. We built so many of
these muckrakers that eventually found an enemy EC, making it hard for enemies to
advance. One way we defended against this same attack was a state called REMOV-
ING BLOCKAGE, where if we have more than 6 enemies in the surrounding squares
of our EC, we build a politician that immediately empowers, in order to clear the build
spots for our EC.

In general, our units moved away from enemies that could attack them, which proved a
decent initial movement strategy for us. In addition, when we rushed a base and it was
already taken over, our failed rush politicians (which had a significant amount of influence),
would turn into what we called Golem Politicians. These politicians would patrol the base
they were assigned, waiting to kill big enemies that approached it. This was a nice defensive
strategy in the beginning, but we eventually got rid of it as the meta evolved.



3 Musketeers - Battlecode 2021 Post Mortem

3.1.4 Self-Empowering

One of the main strategies that developed early on involved exploiting large buff whenever
possible. Teams would create a big politician whose sole purpose was to empower next to its
home EC. If enough enemy slanderers were killed, this technique allowed you to exponentially
grow our influence in the few rounds that the buff was high during a game. This gave you a
significant influence advantage a lot of the time, and allowed you to stay ahead. However, in
an attempt to nerf this, Teh Devs made the initial cooldown of politicians and muckrakers to
be 10 turns and decreased the amount of buff given in general. We removed self-empowering
for a brief period, before quickly putting it back in after some scrims with Kryptonite,
seeing that they were still using it rather effectively.

3.1.5 Bytecode Optimizations

We realized that storing the IDs of the units that an EC created would be crucial, as we
wanted to loop through them every turn to update our information about enemy and other
friendly units. We stored these IDs in an arraylist originally, but Java.util data structures
proved to be very costly in terms of bytecode. As a result, we developed a custom data
structure called a FastIterableIntSet, which used a StringBuilder to store a set separated by
the “ˆ” character. All operations on StringBuilders conveniently only cost 1 bytecode, which
allowed us to quickly iterate and update the size of them. This find was key as we started
to spawn more units in later stages of the game. We used this logic for future iterations of
our bot to build fast maps, and sets that stored information other than integers.4

3.2 Sprint 1 to Sprint 2

3.2.1 Formations

After sprint 1, the primary thing we saw from other teams that we wanted to implement was
formations. Whereas our bots were very individual and did what was best for them, the top
teams had coordinated groups of units, so we started to do the same. The first change was
to keep slanderers close to the EC. As such, we changed our code and removed bodyguards
entirely, instead creating a new class of politicians called protectors that rotated around the
base to protect our slanderers. These politicians would attempt to push enemies away from
the EC so that the enemies could never find us, and if enemies got too close, the politicians
would empower. Moreover, rather than just having slanderers move randomly and avoid
enemies, we programmed the slanderers to have an intentional formation where they all stay
exactly one diagonal square from the nearest slanderer. This was useful because it allows
units to move between these diagonal lines and escape the EC, whereas before the slanderers
could become cluttered and prevent troop movement.

Lattices also became rather popular, spreading units out evenly across the entire map so
that the opponent couldn’t get anywhere without you knowing. We wanted to have both
our protector politicians and our muckrakers to lattice, and only with their respective types.
We spent a lot of time tweaking and trying different heuristics that would achieve the best

4We wish we could take credit for these ideas. If you wanna read more about bytecode stuff, check out
the links at the end of the doc!



3 Musketeers - Battlecode 2021 Post Mortem

Figure 1: Slanderers in diagonal lines to allow troop movement

lattice, eventually settling on just moving away from the closest unit of the same type,
which worked moderately well. Every team seemed to have different methods of achieving
their lattice, but we wanna give special props to team monky, who created a beautiful and
amazingly effective lattice by making their units behave like repelling point charges.

3.2.2 Enemy Reporting

In addition to improved formations making our bots look more like an actual team, we also
greatly improved our communications code. Namely, we had all our units report anytime
they find an enemy, and we calculated the average enemy direction. This was important,
because it allowed us to do two things. First, all our slanderers, in groups close to the EC,
would move away from the average enemy direction. We would also spawn them away from
the average enemy direction. Second, we created a new class of muckraker called hunter
muckers. These muckrakers, when they find enemy ECs, charge them. If we already know
where an enemy EC is, we give the hunter mucker this location when we spawn it. If someone
else finds an enemy EC and reports it, these hunter muckers answer the ”attack call” and can
swarm enemy bases, preventing them from creating units. This led to one small problem,
though, which was that our rush politicians would have trouble destroying enemy ECs if
the EC was surrounded by our hunter muckers. To fix this, we implemented a tactic called
muckraker dispersion, where muckrakers move away from politicians when they read the flag
and see that it is rushing a base. This created a “parting the red sea” effect that was super
satisfying to watch and cleared the way for our rush politicians. Once the politicians finish
rushing the base, the muckrakers could return to their position.

3.2.3 Control Flow

During testing, we realized that we weren’t consistent throughout the code; sometimes we’d
switch states at the beginning, and sometimes we’d switch at the end. For example, before
the switch statement, we had a function called toggleBuildingProtectors that either starts
building those circular rotating protectors or stops. Then, inside the switch statement, in
the BUILDING PROTECTORS case, we go into state RUSHING if we’re ready. First of
all, this process could repeat indefinitely, skipping turns and creating state stacks of sizes



3 Musketeers - Battlecode 2021 Post Mortem

Figure 2: Muckraker dispersion creating a tunnel to the enemy ECs

>100. Second of all, constantly switching states is prone to errors. To fix this, we overhauled
the entirety of our EC control flow. We took out all state switching from inside the switch
statement and had one big nested if statement that had a set of prioritized things: Can we
do our first priority? If so, great. Go into that state and enter the switch case. If not, move
on to priority number 2. First of all, this avoids large state stacks. Since you can only move
upwards in terms of priority, the state stack, rather than having a maximum size of several
hundred, had a maximum size of about 11, since all that could be stored is lower priorities,
in order. Second of all, it ensures that we don’t waste turns. We decide on a state at the
beginning and then execute, never turning back. Third of all, we ensure that we only toggle
states before we do anything in that state for that turn, which is way less prone to errors
where robots think they’re in the wrong state.5

3.2.4 Advanced Bidding

We wanted a bidding strategy that won a majority of the bids without causing us to sacrifice
more influence than we needed to. Our original thought was to bid based on what phase we
were in or what kind of unit we were creating, but eventually we came up with a technique
similar to binary search, where we have a high bid and low bid. If we win a bid, we lower
the high bid to our previous bid. If we lose a bid, we raise the low bid to our previous bid.
When necessary, we half the lower bid or double the higher bid. Eventually, as ECs reach
an equilibrium influence, we begin to narrow down on the opponents’ average bid, allowing
us to win the majority of the bids whilst only bidding about one or two more than our
opponents. This allowed us to win a lot more bids than we usually do, but it also allowed
us to be more effective in our takeovers, since we had more influence. Later, we improved
this bidding strategy by adding an equilibrium feature. If bidding X results in a win, and
bidding X-1 results in a loss, we continue bidding X until we lose.

5In hindsight, we could have avoided these nested ifs by putting control flow decisions in a method and
just returning when we’d decided to change states.



3 Musketeers - Battlecode 2021 Post Mortem

3.3 Sprint 2 to Quals

3.3.1 EC Restructure

We noticed that a lot of teams were hardcoding their initial moves for the first ∼30 robots,
so we decided to do that too. While we tweaked our initial robots a bit, the main idea was
first make a single large slanderer to make money, then send out 8 scout muckrakers in the
cardinal directions, along with 2 explorer politicians to explore the map and find enemies6.
After that, we would alternate between slanderers and politicians, keeping the ratio at about
2 politicians per slanderer7

After hardcoding the first part of the game, we moved on to two main states, CHILLING,
and ACCELERATED SLANDERERS.

• CHILLING was what to do when you don’t really have anything going on, but there
are some enemies near the base. In this state we built a ratio of 2 politicians to 2
muckrakers to 1 slanderer, but only made slanderers of size over 1008. If we didn’t
have enough money to build a slanderer, we would simply build more 1 influence
muckrakers until we did.

• ACCELERATED SLANDERERS was what to do when there are no enemies near.
In this case, we only build slanderers and politicians, with 2 politicians per slanderer9

We could still rush enemy/neutral bases from either of these states, so the state stack was
still in effect, but adding these two main states to our EC code and hardcoding our initial
strategy greatly improved our bot’s performance.

3.3.2 Buff Mucks

Something that we noticed early on is that a lot of the top teams made slanderers very early
on, and didn’t protect them at the beginning of the game, as they would kill any enemy
muckraker before they were in sensing radius of the base. In order to take advantage of this,
we decided to send a buff Muck (influence 150 muckraker10), to the first location that one of
our original muckrakers from the hard coded first moves died. This was likely to be very close
to sensing radius of the enemy base, and the goal was that this buff muckraker would expose
some slanderers before it’s eventual death. This ended up working very well for us and made
our bot much more deadly. In addition, we decided to send buff mucks(size 150) to any exist-
ing enemy bases that we knew about to make sure that slanderer production was always low.

6politicians are faster than muckrakers, so they can explore faster, but muckrakers are more likely to get
killed near an enemy base, tipping us off as to where enemy bases may be before we ever lay eyes on them

7this early game was later changed to 1 politician per slanderer in order to make more money
8this was changed later
9we probably should have made more slanderers in this mode, but oh well

10At this point, we were one of the only top teams to NOT use buff mucks, so we were kind of late to the
party adding them in.



3 Musketeers - Battlecode 2021 Post Mortem

(a) Scout Muckraker dying while outside of sens-
ing radius of EC

(b) Buff Muckraker going to Scout location death,
unable to be killed easily en route to slanderers

3.3.3 About to Die

In the sprint 2 tournament, one thing we noticed was that other teams would make 1 cost
muckrakers to suround their base when a large politician was coming to overtake it. This
would force the large politician to split its empower influence between the base and the 1
cost muckrakers, possibly saving the base from dying. We added ABOUT TO DIE mode in
order to do this as well if we see a politician bigger to overtake the base coming for us.

3.4 Post-Quals to Finals

Self-empowering was completely removed just days before quals, a huge game change that
teams didn’t have much time to adapt for in time for quals. As a result, no new meta had
developed for it and nobody really knew what to expect as we got closer to finals.

Nonetheless, the one thing we knew we needed to improve on going into finals was using
our influence more efficiently. With that in mind, we focused mostly on improving offense
and tweaking micro and defense, keeping our economy the same.

3.4.1 Rush Buddies

With other teams also aiming to dilute the attacks of our own rush politicians, we needed
some way to combat this ourselves. Our plan of attack11 was to send a supporting politician
that would empower before the larger, ”head” politician, clearing out any smaller units.
The key to this strategy working relied on turn order. Because robots get their turns in
the order they are created, if we built these politicians one right after the other, we could
(almost) guarantee that they would get their turns in succession and that the attack would
be successful.

3.4.2 Other Changes

On the defensive side, we started communicating the influence of buff mucks in order to
build a single politician just large enough to kill it. This would help us avoid the problem of

11Pun intended



3 Musketeers - Battlecode 2021 Post Mortem

Figure 4: Rush buddy system successfully converting an enemy EC

multiple empower taxes being paid if we were to simply use our smaller politicians to defend.
Most movement micro didn’t change, although we specifically wanted our politicians to

get better unit/influence trades when defending. We had a big problem of politicians far
away from enemies empowering, resulting in effectively no damage done to the enemy due to
dilution. Like most teams, we ended up deciding to loop through attack radii to determine
the one that would do the most damage or kill the most enemies.

The final change we made was allowing ECs to check on each other when taken over. If
we knew that one of our friendly ECs got captured, we would send a scout there that would
report back if we needed to send a big rush politician to recapture, or if the friendly EC had
units that handled it and already recaptured it.

3.4.3 The Final Tournament

Nobody could have predicted the completely new wave of maps that came with the final
tournament. Almost every finals map rewarded going super hard on eco and hurt any bot
that relied on rushing early to mid-game. While we were knocked out after a win in losers,
the rest of the tournament was still super exciting to watch. Team babyducks lost first
round but made a huge losers run to make it back to grand finals, resetting the bracket and
beating Producing Perfection in game 5 of true finals!

4 Thoughts about the Game

Since this was our first ever Battlecode tournament, by default it was our favorite. With
this being said however, we all really enjoyed the game and trying to master it to the best
of our abilities. While the top teams all did eco pretty hard, there was still a good amount
of different strategies employed by different top teams, which is good.

If there was a change that we could make, it would probably be adding more consistency
between the maps used in scrims and the maps used in the final tournament, especially
considering different maps can drastically change what strategies are optimal (We probably
should have made our code more eco centric if we hadn’t seen enemies in a while, but we
think that the point still holds).



3 Musketeers - Battlecode 2021 Post Mortem

5 Suggestions for New Players

First, we are just going to reference a blurb from Java Best Waifu’s 2020 postmortem as it
sums up a lot of stuff really well:

“If I had to say what are the most important factors to consider when
building your bot, I would say Simplicity, Robustness and Structured
Code. In my personal experience, every time I’d try to implement a so-
phisticated strategy that requires a lot of coordination it would always flop
since everything that can go wrong does go wrong. Usually the bots that
perform the best are those that perform the basics really well (navigation,
communication, micro, macro, etc.). It is especially important to use the
first days to implement good and robust primitives for such basics since
they’ll be needed regardless of the strategy. It is usually more effective to
spend your time on the basics and then figure out the optimal strategy
depending on what other players do than trying to devise the optimal
strategy from the go.

Also, if the code undergoes drastic changes (for instance because you
change the bot’s main strategy) I would suggest to do a bot from scratch.
It is usually faster than expected and it is way better on the long run.”

With that being said, here are some things we’d like to add.

Don’t be afraid to steal ideas. Since the meta in games changes so much, you pretty
much have to steal ideas at some point in order to evolve your bot to the top level of compe-
tition for any given week. Trying to emulate a team that just beat can be a necessary step
in getting better.

Read everything . Reading old blog posts and post-mortems can give amazing insight into
the kind of techniques and thinking that will get you far. Even going through old code bases
on github can be a beneficial (albeit daunting) endeavor. Anyway, here are some links to some
that helped us! Bytecode optimizations, Battlecode snippets, Battlegaode 2020 Postmortem.

Rigorously debug/watch matches. Sometimes errors are really hard to find, so it can
be super useful to watch playthroughs of matches either against other teams or against old
versions of your bot to see if all intended behavior is happening. We found a lot of bugs
by going over a bunch of games frame by frame and seeing what was happening (even in wins).

Don’t get discouraged if you haven’t made progress in a bit. Sometimes it’s hard to
know what part of your code is causing it to perform sub-optimally. It’s possible that you
could be working on the completely wrong section, and missing an area that could cause great
improvement in performance. With that being said, if you haven’t made progress in a while,
try shifting focus from what you are doing or taking a step back to look at the bigger picture.

https://cory.li/bytecode-hacking/
https://web.archive.org/web/20140714052755/http://blog.stevearc.com/2011/12/30/code-snippets.html
http://web.mit.edu/agrebe/www/battlecode/20/index.html


3 Musketeers - Battlecode 2021 Post Mortem

Use the Discord. Top teams tend to talk about different ideas in discord and being
active there can be a good way to stay in the loop about the current meta.

Read the specs again. and again, and again... It’s super easy to miss important or
useful details when glossing over the specs the first time through. In the same vain, read the
javadocs through to see exactly what methods you’ve got access to. You’d be surprised at
how many functions there are that can serve as great quality of life improvements. We made
the mistake of not really doing either of these things until like after sprint 2 and it cost us
a lot of time and energy that could have been avoided.

6 Final Thoughts

Overall, We had tons of fun and are definitely going to come back next year in some form
or another. A lot of people helped us out along the way, with special shoutouts to monky
for being great friends and Kryptonite, Producing Perfection, and Blue Dragon for
being part of the CMU gang!


	Introduction
	Battlecode Introduction
	Team Introduction

	Game Overview
	Bot Development and Meta
	Release to Sprint 1
	EC States
	Communications
	General Initial Strategy
	Self-Empowering
	Bytecode Optimizations

	Sprint 1 to Sprint 2
	Formations
	Enemy Reporting
	Control Flow
	Advanced Bidding

	Sprint 2 to Quals
	EC Restructure
	Buff Mucks
	About to Die

	Post-Quals to Finals
	Rush Buddies
	Other Changes
	The Final Tournament


	Thoughts about the Game
	Suggestions for New Players
	Final Thoughts

